
IJSRSET162678 | Received : 26 Nov. 2016 | Accepted : 30 Dec. 2016 | November-December-2016 [(2) 6: 289-297]

© 2016 IJSRSET | Volume 2 | Issue 6 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

289

Threshold Proxy Re-encryption Scheme and Decentralized
Erasure Code Based Cloud Storage and Data Forwarding

1
Mannem Pratyusha,

2
V. Lakshma Reddy

1
* PG Scholar in Department of Computer Science & Engineerng , Pace Institute of Tech and Sciences, Vallur, Ongole, Andhra

Pradesh, India
2
Assistant Professor Department of CSE, PACE Institute of Technology and Sciences, Vallur, Ongole, Andhra Pradesh, India

ABSTRACT

Cloud storage system, consisting of a collection of storage servers, provides long-term storage services over the

Internet. Storing data in a third party’s cloud system causes serious concern over data confidentiality. General

encryption schemes protect data confidentiality, but also limit the functionality of the storage system because a few

operations are supported over encrypted data. Constructing a secure storage system that supports multiple functions

is challenging when the storage system is distributed and has no central authority. We propose a threshold proxy re-

encryption scheme and integrate it with a decentralized erasure code such that a secure distributed storage system is

formulated. The distributed storage system not only supports secure and robust data storage and retrieval, but also

lets a user forward his data in the storage servers to another user without retrieving the data back. The main

technical contribution is that the proxy re-encryption scheme supports encoding operations over encrypted messages

as well as forwarding operations over encoded and encrypted messages. Our method fully integrates encrypting,

encoding, and forwarding. We analyse and suggest suitable parameters for the number of copies of a message

dispatched to storage servers and the number of storage servers queried by a key server. These parameters allow

more flexible adjustment between the number of storage servers and robustness.

Keywords: Secure Storage System , Threshold Cryptography ,Decentralized Erasure Code, Proxy Re-Encryption.

I. INTRODUCTION

AS become available in recent years, many services are

high-speed networks and ubiquitous Internet access

provided on the Internet such that users can use them

from anywhere at any time. For example, the email

service is probably the most popular one. Cloud

computing is a concept that treats the resources on the

Internet as a unified entity, a cloud. Users just use

services without being concerned about how

computation is done and storage is managed. In this

paper, we focus on designing a cloud storage system for

robustness, confidentiality, and functionality. A cloud

storage system is considered as a largescale distributed

storage system that consists of many independent

storage servers.

Data robustness is a major requirement for storage

systems. There have been many proposals of storing

data over storage servers [1], [2], [3], [4], [5]. One way

to provide data robustness is to replicate a message such

that each storage server stores a copy of the message. It

is very robust because the message can be retrieved as

long as one storage server survives. Another way is to

encode a message of k symbols into a codeword of n

symbols by erasure coding. To store a message, each of

its codeword symbols is stored in a different storage

server. A storage server failure corresponds to an

erasure error of the codeword symbol. As long as the

number of failure servers is under the tolerance

threshold of the erasure code, the message can be

recovered from the codeword symbols stored in the

available storage servers by the decoding process. This

provides a tradeoff between the storage size and the

tolerance threshold of failure servers. A decentralized

erasure code is an erasure code that independently

computes each codeword symbol for a message. Thus,

the encoding process for a message can be split into n

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 290

parallel tasks of generating codeword symbols. A

decentralized erasure code is suitable for use in a

distributed storage system. After the message symbols

are sent to storage servers, each storage server

independently computes a codeword symbol for the

received message symbols and stores it. This finishes

the encoding and storing process. The recovery process

is the same.

Storing data in a third party’s cloud system causes

serious concern on data confidentiality. In order to

provide strong confidentiality for messages in storage

servers, a user can encrypt messages by a cryptographic

method before applying an erasure code method to

encode and store messages. When he wants to use a

message, he needs to retrieve the codeword symbols

from storage servers, decode them, and then decrypt

them by using cryptographic keys. There are three

problems in the above straightforward integration of

encryption and encoding. First, the user has to do most

computation and the communication traffic between the

user and storage servers is high. Second, the user has to

manage his cryptographic keys. If the user’s device of

storing the keys is lost or compromised, the security is

broken. Finally, besides data storing and retrieving, it is

hard for storage servers to directly support other

functions. For example, storage servers cannot directly

forward a user’s messages to another one. The owner of

messages has to retrieve, decode, decrypt and then

forward them to another user.

In this paper, we address the problem of forwarding data

to another user by storage servers directly under the

command of the data owner. We consider the system

model that consists of distributed storage servers and

key servers. Since storing cryptographic keys in a single

device is risky, a user distributes his cryptographic key

to key servers that shall perform cryptographic

functions on behalf of the user. These key servers are

highly protected by security mechanisms. To well fit the

distributed structure of systems, we require that servers

independently perform all operations. With this

consideration, we propose a new threshold proxy re

encryption scheme and integrate it with a secure

decentralized code to form a secure distributed storage

system. The encryption scheme supports encoding

operations over encrypted messages and forwarding

operations over encrypted and encoded messages. The

tight integration of encoding, encryption, and

forwarding makes the storage system efficiently meet

the requirements of data robustness, data confidentiality,

and data forwarding. Accomplishing the integration

with consideration of a distributed structure is

challenging. Our system meets the requirements that

storage servers independently perform encoding and re-

encryption and key servers independently perform

partial decryption. Moreover, we consider the system in

a more general setting than previous works. This setting

allows more flexible adjustment between the number of

storage servers and robustness.

Our contributions. Assume that there are n distributed

storage servers and m key servers in the cloud storage

system. A message is divided into k blocks and

represented as a vector of k symbols. Our contributions

are as follows:

1. We construct a secure cloud storage system that

supports the function of secure data forwarding by

using a threshold proxy re-encryption scheme.The

encryption scheme supports decentralized erasure

codes over encrypted messages and forwarding

operations over encrypted and encoded messages.

Our system is highly distributed where storage

servers independently encode and forward messages

and key servers independently perform partial

decryption.

2. We present a general setting for the parameters of

our secure cloud storage system. Our parameter

setting of n=ak
C

supersedes the previous one of

n=ak√k, where C≥1.5 and a >√2[6]. Our result

n=ak
C

akc allows the of storage servers be much

great than the number of blocks of a message.In

practical systems, the number of storage servers is

much more than k. The sacrifice is to slightly

increase the total copies of an encrypted message

symbol sent to storage servers.

Nevertheless, the storage size in each storage server

does not increase because each storage server stores an

encoded result (a codeword symbol), which is a

combination of encrypted message symbols.

II. METHODS AND MATERIAL

Related Works

We briefly review distributed storage systems, proxy

reencryption schemes, and integrity checking

mechanisms.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 291

2.1 Distributed Storage Systems

At the early years, the Network-Attached Storage (NAS)

[7] and the Network File System (NFS) [8] provide

extra storage devices over the network such that a user

can access the storage devices via network connection.

Afterward, many improvements on scalability,

robustness, efficiency, and security were proposed [1],

[2], [9]. A decentralized architecture for storage systems

offers good scalability, because a storage server can join

or leave without control of a central authority. To

provide robustness against server failures, a simple

method is to make replicas of each message and store

them in different servers. However, this method is

expensive as z replicas result in z times of expansion.

 One way to reduce the expansion rate is to use erasure

codes to encode messages [10], [11], [12], [13], [5]. A

message is encoded as a codeword, which is a vector of

symbols, and each storage server stores a codeword

symbol. A storage server failure is modeled as an

erasure error of the stored codeword symbol. Random

linear codes support distributed encoding, that is, each

codeword symbol is independently computed. To store a

message of k blocks, each storage server linearly

combines the blocks with randomly chosen coefficients

and stores the codeword symbol and coefficients. To

retrieve the message, a user queries k storage servers for

the stored codeword symbols and coefficients and

solves the linear system. Dimakis et al. [13] considered

the case that n=ak
C

for a fixed constant a. They showed

that distributing each block of a message to v randomly

chosen storage servers is enough to have a probability

1- k/p –o(1) of a successful data retrieval, where v = b

ln k, b > 5a, and p is the order of the used group. The

sparsity parameter v = b ln k is the number of storage

servers which a block is sent to. The larger v is, the

communication cost is higher and the successful

retrieval probability is higher. The system has a light

data confidentiality because an attacker can compromise

k storage servers to get the message.

Lin and Tzeng [6] addressed robustness and

confidentiality issues by presenting a secure

decentralized erasure code for the networked storage

system. In addition to storage servers, their system

consists of key servers, which hold cryptographic key

shares and work in a distributed way. In their system,

stored messages are encrypted and then encoded. To

retrieve a message, key servers query storageservers for

the user. As long as the number of available key servers

is over a threshold t, the message can be successfully

retrieved with an overwhelming probability. One of

their results shows that when there are n storage servers

with n=ak√k, the parameter v is v = b ln k with b > 5a,

and each key server queries 2 storage servers for each

retrieval request, the probability of a successful retrieval

is at least k/p –o(1) .

2.2 Proxy Re-Encryption Schemes

Proxy re-encryption schemes are proposed by Mambo

and Okamoto [14] and Blaze et al. [15]. In a proxy re-

encryption scheme, a proxy server can transfer a

ciphertext under a public key PKA to a new one under

another public key PKB by using the re-encryption key

RKA→B. The server does not know the plaintext during

transformation. Ateniese et al. [16] proposed some

proxy re-encryption schemes and applied them to the

sharing function of secure storage systems. In their

work, messages are first encrypted by the owner and

then stored in a storage server. When a user wants to

share his messages, he sends a re-encryption key to the

storage server. The storage server re-encrypts the

encrypted messages for the authorized user. Thus, their

system has data confidentiality and supports the data

forwarding function. Our work further integrates

encryption, re-encryption, and encoding such that

storage robustness is strengthened.

Figure 1. A general system model of our work

Type-based proxy re-encryption schemes proposed by

Tang [17] provide a better granularity on the granted

right of a re-encryption key. A user can decide which

type of messages and with whom he wants to share in

this kind of proxy reencryption schemes. Key-private

proxy re-encryption schemes are proposed by Ateniese

et al. [18]. In a key-private proxy re-encryption scheme,

given a re-encryption key, a proxy server cannot

determine the identity of the recipient. This kind of

proxy re-encryption schemes provides higher privacy

guarantee against proxy servers. Although most proxy

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 292

re-encryption schemes use pairing operations, there

exist proxy re-encryption schemes without pairing [19].

 2.3 Integrity Checking Functionality

Another important functionality about cloud storage is

the function of integrity checking. After a user stores

data into the storage system, he no longer possesses the

data at hand. The user may want to check whether the

data are properly stored in storage servers. The concept

of provable data possession [20], [21] and the notion of

proof of storage [22], [23], [24] are proposed. Later,

public auditability of stored data is addressed in [25].

Nevertheless all of them consider the messages in the

cleartext form.

3. Scenario

We present the scenario of the storage system, the threat

model that we consider for the confidentiality issue, and

a discussion for a straightforward solution.

3.1 System Model

As shown in Fig. 1, our system model consists of users,

n storage servers SS1; SS2; . . . ; SSn, and m key servers

KS1; KS2; . . . ; KSm. Storage servers provide storage

services and key servers provide key management

services. They work independently. Our distributed

storage system consists of four phases: system setup,

data storage, data forwarding, and data retrieval. These

four phases are described as follows. In the system setup

phase, the system manager chooses system parameters

and publishes them. Each user A is assigned a public-

secret key pair (PKA,SKA). User A distributes his

secret key SKA to key servers such that each key server

KSi holds a key share SKA,i, 1≤ i ≤ m. The key is

shared with a threshold t.

In the data storage phase, user A encrypts his message

M and dispatches it to storage servers. A message M is

decomposed into k blocks m1; m2; . . . ; mk and has an

identifier ID. User A encrypts each block mi into a

ciphertext Ci and sends it to v randomly chosen storage

servers. Upon receiving ciphertexts from a user, each

storage server linearly combines them with randomly

chosen coefficients into a codeword symbol and stores it.

Note that a storage server may receive less than k

message blocks and we assume that all storage servers

know the value k in advance. In the dataforwarding

phase, user A forwards his encrypted message with an

identifier ID stored in storage servers to user B such that

B can decrypt the forwarded message by his secret key.

To do so, A uses his secret key SKA and B’s public key

PKB to compute a re-encryption key RK
ID

A→B and then

sends RK
ID

 A→B to all storage servers. Each storage

server uses the reencryption key to re encrypt its

codeword symbol for later retrieval requests by B. The

re-encrypted codeword symbol is the combination of

ciphertexts under B’s public key. In order to distinguish

re-encrypted codeword symbols from intact ones, we

call them original codeword symbols and reencrypted

codeword symbols, respectively.

 In the data retrieval phase, user A requests to retrieve a

message from storage servers. The message is either

stored by him or forwarded to him. User A sends a

retrieval request to key servers. Upon receiving the

retrieval request and executing a proper authentication

process with user A, each key server KSi requests u

randomly chosen storage servers to get codeword

symbols and does partial decryption on the received

codeword symbols by using the key share SKA,i. Finally,

user A combines the partially decrypted codeword

symbols to obtain the original message M.

 System recovering. When a storage server fails, a new

one is added. The new storage server queries k available

storage servers, linearly combines the received

codeword symbols as a new one and stores it. The

system is then recovered.

3.2 Threat Model

We consider data confidentiality for both data storage

and data forwarding. In this threat model, an attacker

wants to break data confidentiality of a target user. To

do so, the attacker colludes with all storage servers,

nontarget users, and up to (t – 1) key servers. The

attacker analyzes stored messages in storage servers, the

secret keys of nontarget users, and the shared keys

stored in key servers. Note that the storage servers store

all re-encryption keys provided by users. The attacker

may try to generate a new re-encryption key from stored

re-encryption keys. We formally model this attack by

the standard chosen plaintext attack
1
 of the proxy re-

encryption scheme in a threshold version, as shown in

Fig. 2.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 293

Figure 2. The security game for the chosen plaintext

attack.

The challenger C provides the system parameters. After

the attacker A chooses a target user T , the challenger

gives him (t-1) key shares of the secret key SKT of the

target user T to model (t-1) compromised key servers.

Then, the attacker can query secret keys of other users

and all reencryption keys except those from T to other

users. This models compromised nontarget users and

storage servers. In the challenge phase, the attacker

chooses two messages M0 and M1 with the identifiers

ID0 and ID1, respectively. The challenger throws a

random coin b and encrypts the message Mb with T ’s

public key PKT . After getting the ciphertext from the

challenger, the attacker outputs a bit b0 for guessing b.

In this game, the attacker wins if and only if b0 ¼ b.

The advantage of the attacker is defined as |1/2-

Pr[b’=b]|.

A cloud storage system modeled in the above is secure

if no probabilistic polynomial time attacker wins the

game with a nonnegligible advantage. A secure cloud

storage system implies that an unauthorized user or

server cannot get the content of stored messages, and a

storage server cannot generate re-encryption keys by

himself. If a storage server can generate a re-encryption

key from the target user to another user B, the attacker

can win the security game by re-encrypting the

ciphertext to B and decrypting the reencrypted

ciphertext using the secret key SKB. Therefore, this

model addresses the security of data storage and data

forwarding.

3.3 A Straightforward Solution

A straightforward solution to supporting the data

forwarding function in a distributed storage system is as

follows:when the owner A wants to forward a message

to user B, he downloads the encrypted message and

decrypts it by using his secret key. He then encrypts the

message by using B’s public key and uploads the new

ciphertext. When B wants to retrieve the forwarded

message from A, he downloads the ciphertext and

decrypts it by his secret key. The whole data forwarding

process needs three communication rounds for A’s

downloading and uploading and B’s downloading. The

communication cost is linear in the length of the

forwarded message. The computation cost is the

decryption and encryption for the owner A, and the

decryption for user B. Proxy re-encryption schemes can

significantly decrease communication and computation

cost of the owner. In a proxy re-encryption scheme,the

owner sends a re-encryption key to storage servers such

that storage servers perform the re-encryption operation

for him. Thus, the communication cost of the owner is

independent of the length of forwarded message and the

computation cost of re-encryption is taken care of by

storage servers. Proxy re-encryption schemes

significantly reduce the overhead of the data forwarding

function in a secure storage system.

III. RESULTS AND DISCUSSION

Construction of Secure Cloud Storage Systems

Before presenting our storage system, we briefly

introduce the algebraic setting, the hardness assumption,

an erasure code over exponents, and our approach.

Bilinear map. Let G1 and G2 be cyclic multiplicative

groups
2
 with a prime order p and q ϵG1 be a generator.

A map ẽ:G X G1→ G2 is a bilinear map if it is

efficiently computable and has the properties of

bilinearity and nondegeneracy: for any x,y ϵ Z
*
p, ẽ

(g
x

,g
y
)= ẽ (g

,g)

xy
and ẽ (g

,g)is not the identity

element in G2. Let Gen(1
λ
)be an algorithm

generating,(g ẽ ,G1,G2,p), where is the length of p. Let

x ϵ R X denote that x is randomly chosen from the set X.

Decisional bilinear Diffie-Hellman assumption. This

assumption is that it is computationally infeasible to

distinguish the distributions (g, g
x
, g

y
, g

z
, ẽ (g

,g)

xyz
) and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 294

(g, g
x
, g

y
, g

z
, ẽ (g

,g)

r
, where x, y, z ϵ R Z

*
p . Formally,

for any probabilistic polynomial time algorithm A, the

following is negligible (in λ).

|Pr[A(g,g
x
, g

y
g

z
,Qz)=b:x,y,z,r,ϵR Z

*
p,

Q0= ẽ (g

,g)

xyz
;

Q1= ẽ (g

,g)

r
;b ϵ R{0,1}]-1/2|.

Erasure coding over exponents. We consider that the

message domain is the cyclic multiplicative group G2

described above. An encoder generates a generator

matrixG=[gi,j] for 1≤ i ≤ k, 1 ≤ j ≤ n as follows: for

each row, the encoder randomly selects an entry and

randomly sets a value from Z
*
p to the entry. The

encoder repeats this step v times with replacement for

each row. An entry of a row can be selected multiple

times but only set to one value. The values of the rest

entries are set to 0. Let the message be (m1,m2, . . .,mk)

ϵ G
K
 2. The encoding process is to generate

(w1,w2, . . .,wn) ϵ G G
n2

 , where mg1 ,mg 2 mg k for1

to n. The first step of the decoding process is tocompute

the inverse of a k submatrix K of G. The final step of

the decoding process is to compute An example is

shown in Fig. 3. User A stores two messages m1 and

m2 into four storage servers. When the storage servers

SS1 and SS3 are available and the k k submatrix K is

invertible, user A can decode m1 and m2 from the

codeword symbols w1;w3 and the coefficients (g1,g2),

which are stored in the storage servers SS1 and SS3.

Our approach. We use a threshold proxy re-encryption

scheme with multiplicative homomorphic property. An

encryption scheme is multiplicative homomorphic if it

supports a group operation on encrypted plaintexts

without decryption

D(SK, E(PK, m1) E(PK, m2)) = m1. m2

where E is the encryption function, D is the decryption

function, and (PK,SK) is a pair of public key and secret

key. Given two coefficients g1 and g2, two message

symbols m1 and m2 can be encoded to a codeword

symbol mg 11mg 22 in the encrypted form

C = E(PK, m1)
g1

 E(PK, m2)
g2

= E(PK, mg1 , mg 2)

Thus, a multiplicative homomorphic encryption scheme

supports the encoding operation over encrypted

messages. We then convert a proxy re-encryption

scheme with multiplicative homomorphic property into

a threshold version. A secret key is shared to key

servers with a threshold value t via the Shamir secret

sharing scheme [26], where t k. In our system, to

decrypt for a set of k message symbols, each key server

independently queries 2 storage servers and partially

decrypts two encrypted codeword symbols. As long as t

key servers are available, k codeword symbols are

obtained from the partially decrypted ciphertexts

4.1 A Secure Cloud Storage System with Secure

Forwarding

As described in Section 3.1, there are four phases of our

storage system.

System Setup. The algorithm SetUp(1
r
)generates the

system parameters μ . A user uses KeyGen(μ) to

generate his public and secret key pair and

ShareKeyGen(.) to share his secret key to a set of m key

servers with a threshold t, where k≤ t ≤ m. The user

locally stores the third component of his secret key.

Data Storage. When user A wants to store a message of

k blocks m1, m2, . . . mk with the identifier ID, he

computes the identity token y= h and performs the

encryption algorithm Enc(.) on and k blocks to get k

original ciphertexts C1, C2, . . . , Ck. An original

ciphertext is indicated by a leading bit b =0. User A

sends each ciphertext Ci to v randomly chosen storage

servers. A storage server receives a set of original

ciphertexts with the same identity token from A. When

a ciphertext Ci is not received, the storage server inserts

Ci = (0,1,t, 1) to the set. The special format of (0,1,t, 1)

is a mark for the absence of Ci. The storage server

performs Encode(.) on the set of k ciphertexts and stores

the encoded result (codeword symbol).

Data Forwarding. User A wants to forward a message

to another user B. He needs the first component a1 of

his secret key. If A does not possess a1, he queries key

servers for key shares. When at least t key servers

respond, A recovers the first component a1 of the secret

key SKA via the KeyRecover(.) algorithm. Let the

identifier of the message be ID. User A computes the re-

encryption key RK
ID

A→B via the ReKeyGen(.)

algorithm and securely sends the reencryption key to

each storage server. By using RK
ID

A→B, a storage

server re-encrypts the original codeword symbol C0

with the identifier ID into a re-encrypted codeword

symbol C
”
 via the ReEnc(.) algorithm such that C

”
 is

decryptable by using B’s secret key. A re-encrypted

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 295

codeword symbol is indicated by the leading bit b =1.

Let the public key PKB of user B be (gb1; hb2).

4.2 Analysis

We analyze storage and computation complexities,

correctness, and security of our cloud storage system in

this section. Let the bit-length of an element in the

group G1 be l1 and G2 be l2. Let coefficients gi,j be

randomly chosen from {0, 1}
l3
.

Computation cost. We measure the computation cost

by the number of pairing operations, modular

exponentiations in G1 and G2, modular multiplications

in G1 and G2, and arithmetic operations over GF(p).

These operations are denoted as Pairing, Exp1, Exp2,

Mult1, Mult2, and Fp, respectively. The cost is

summarized in Table 1. Computing an Fp takes much

less time than computing a Mult1 or a Mult2. The time

of computing an Exp1 is 1.5[log p] times as much as the

time of computing a Mult1, on average, (by using the

square-and multiply algorithm). Similarly, the time of

computing a Exp2 is 1.5[log p] times as much as the

time of computing a Mult2, on average.

Correctness. There are two cases for correctness. The

owner A correctly retrieves his message and user B

correctly retrieves a message forwarded to him. The

correctness of encryption and decryption for A can be

seen in (1). The correctness of re-encryption and

decryption for B can be seen in (2). As long as at least k

storage servers are available, a user can retrieve data

with an overwhelming probability. Thus, our storage

system tolerates n k server failures. The probability of a

successful retrieval. A successful retrieval is an event

that a user successfully retrieves all k blocks of a

message no matter whether the message is owned by

him or forwarded to him. The randomness comes from

the random selection of storage servers in the data

storage phase, the random coefficients chosen by

storage servers, and the random selection of key servers

in the data retrieval phase. The probability of a

uccessful retrieval depends on (n, k, u, v) and all

randomness.

The methodology of analysis is similar to that in [13]

and [6]. However, we consider a different system model

from the one in [13] and a more flexible parameter

setting for n = akc than the settings in [13] and [6]. The

difference between our system model and the one in [13]

is that our system model has key servers. In [13], a

single user queries k distinct storage servers to retrieve

the data. On the other hand, each key server in our

system independently queries u storage servers. The use

of distributed key servers increases the level of key

protection but makes the analysis harder.

Theorem 1. Assume that there are k blocks of a

message, n storage servers, and m key servers, where n

=akc, m≥ t ≥ k, c≥ 1.5 and a is a constant with a >√2.

For v =bk
c-1

ln k and u = 2 with b > 5a, the probability

of a successful retrieval is at least 1- k/p- o(1).

Security. The data confidentiality of our cloud storage

system is guaranteed even if all storage servers,

nontarget users, and up to (t- 1) key servers are

compromised by the attacker. Recall the security game

illustrated in Fig. 2. The proof for Theorem 2 is

provided in Appendix B, available in the online

supplementary material.

Theorem 2. Our cloud storage system described in

Section 4.1 is secure under the threat model in Section

3.2 if the decisional bilinear Diffie-Hellman assumption

holds.

IV. CONCLUSION

In this paper, we consider a cloud storage system

consists of storage servers and key servers. We integrate

a newly proposed threshold proxy re-encryption scheme

and erasure codes over exponents. The threshold proxy

reencryption scheme supports encoding, forwarding,

and partial decryption operations in a distributed way.

To decrypt a message of k blocks that are encrypted and

encoded to n codeword symbols, each key server only

has to partially decrypt two codeword symbols in our

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 296

system. By using the threshold proxy re-encryption

scheme, we present a secure cloud storage system that

provides secure data storage and secure data forwarding

functionality in a decentralized structure. Moreover,

each storage server independently performs encoding

and re-encryption and each key server independently

performs partial decryption.

Our storage system and some newly proposed content

addressable file systems and storage system [27], [28],

[29] are highly compatible. Our storage servers act as

storage nodes in a content addressable storage system

for storing content addressable blocks. Our key servers

act as access nodes for providing a front-end layer such

as a traditional file system interface. Further study on

detailed cooperation is required.

V. REFERENCES

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D.

Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B. Zhao, "Oceanstore:

An chitecture for Global-Scale Persistent

Storage," Proc. Ninth Int’l Conf. Architectural

Support for Programming Languages and

Operating Systems (ASPLOS), pp. 190 201, 2000.

[2] P. Druschel and A. Rowstron, "PAST: A Large-

Scale, Persistent Peer-to-Peer Storage Utility,"

Proc. Eighth Workshop Hot Topics in Operating

System (HotOS VIII), pp. 75-80, 2001.

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R.

Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M.

Theimer, and R. Wattenhofer, "Farsite: Federated,

Available, and Reliable Storage for an

Incompletely Trusted Environment," Proc. Fifth

Symp. Operating System Design and

Implementation (OSDI), pp. 1-14, 2002.

[4] A. Haeberlen, A. Mislove, and P. Druschel,

"Glacier: Highly Durable, Decentralized Storage

Despite Massive Correlated Failures," Proc.

Second Symp. Networked Systems Design and

Implementation (NSDI), pp. 143-158, 2005.

[5] Z. Wilcox-O’Hearn and B. Warner, "Tahoe: The

Least-Authority Filesystem," Proc. Fourth ACM

Int’l Workshop Storage Security and Survivability

(StorageSS), pp. 21-26, 2008.

[6] H.-Y. Lin and W.-G. Tzeng, "A Secure

Decentralized Erasure Code for Distributed

Network Storage," IEEE Trans. Parallel and

Distributed Systems, vol. 21, no. 11, pp. 1586-

1594, Nov. 2010.

[7] D.R. Brownbridge, L.F. Marshall, and B. Randell,

"The Newcastle Connection or Unixes of the

World Unite!," Software Practice and Experience,

vol. 12, no. 12, pp. 1147-1162, 1982.

[8] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,

and B. Lyon, "Design and Implementation of the

Sun Network Filesystem," Proc. USENIX Assoc.

Conf., 1985.

[9] M. Kallahalla, E. Riedel, R. Swaminathan, Q.

Wang, and K. Fu, "Plutus: Scalable Secure File

Sharing on Untrusted Storage," Proc. Second

USENIX Conf. File and Storage Technologies

(FAST), pp. 29- 42, 2003.

[10] S.C. Rhea, P.R. Eaton, D. Geels, H.

Weatherspoon, B.Y. Zhao, and J. Kubiatowicz,

"Pond: The Oceanstore Prototype," Proc. Second

USENIX Conf. File and Storage Technologies

(FAST), pp. 1-14, 2003.

[11] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage,

and G.M. Voelker, "Total Recall: System Support

for Automated Availability Management," Proc.

First Symp. Networked Systems Design and

Implementation (NSDI), pp. 337-350, 2004.

[12] A.G. Dimakis, V. Prabhakaran, and K.

Ramchandran, "Ubiquitous Access to Distributed

Data in Large-Scale Sensor Networks through

Decentralized Erasure Codes," Proc. Fourth Int’l

Symp. Information Processing in Sensor

Networks (IPSN), pp. 111- 117, 2005.

[13] A.G. Dimakis, V. Prabhakaran, and K.

Ramchandran, "Decentralized Erasure Codes for

Distributed Networked Storage," IEEE Trans.

Information Theory, vol. 52, no. 6 pp. 2809-2816,

June 2006.

[14] M. Mambo and E. Okamoto, "Proxy

Cryptosystems: Delegation of the Power to

Decrypt Ciphertexts," IEICE Trans. Fundamentals

of Electronics, Comm. and Computer Sciences,

vol. E80-A, no. 1, pp. 54-63, 1997.

[15] M. Blaze, G. Bleumer, and M. Strauss,

"Divertible Protocols and Atomic Proxy

Cryptography," Proc. Int’l Conf. Theory and

Application of Cryptographic Techniques

(EUROCRYPT), pp. 127-144, 1998.

[16] G. Ateniese, K. Fu, M. Green, and S.

Hohenberger, "Improved Proxy Re-Encryption

Schemes with Applications to Secure Distributed

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 297

Storage," ACM Trans. Information and System

Security, vol. 9, no. 1, pp. 1-30, 2006.

[17] Q. Tang, "Type-Based Proxy Re-Encryption and

Its Construction," Proc. Ninth Int’l Conf.

Cryptology in India: Progress in Cryptology

(INDOCRYPT), pp. 130-144, 2008.

[18] G. Ateniese, K. Benson, and S. Hohenberger,

"Key-Private Proxy Re-Encryption," Proc. Topics

in Cryptology (CT-RSA), pp. 279-294, 2009.

[19] J. Shao and Z. Cao, "CCA-Secure Proxy Re-

Encryption without Pairings," Proc. 12th Int’l

Conf. Practice and Theory in Public Key

Cryptography (PKC), pp. 357-376, 2009.

[20] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, "Provable Data

Possession at Untrusted Stores," Proc. 14th ACM

Conf. Computer and Comm. Security (CCS), pp.

598-609, 2007.

[21] G. Ateniese, R.D. Pietro, L.V. Mancini, and G.

Tsudik, "Scalable and Efficient Provable Data

Possession," Proc. Fourth Int’l Conf. Security and

Privacy in Comm. Netowrks (SecureComm), pp.

1-10,2008.

[22] H. Shacham and B. Waters, "Compact Proofs of

Retrievability," Proc. 14th Int’l Conf. Theory and

Application of Cryptology and Information

Security (ASIACRYPT), pp. 90-107, 2008.

[23] G. Ateniese, S. Kamara, and J. Katz, "Proofs of

Storage from Homomorphic Identification

Protocols," Proc. 15th Int’l Conf. Theory and

Application of Cryptology and Information

Security (ASIACRYPT), pp. 319-333, 2009.

[24] K.D. Bowers, A. Juels, and A. Oprea, "HAIL: A

High-Availability and Integrity Layer for Cloud

Storage," Proc. 16th ACM Conf. Computer and

Comm. Security (CCS), pp. 187-198, 2009.

[25] C. Wang, Q. Wang, K. Ren, and W. Lou,

"Privacy-Preserving Public Auditing for Data

Storage Security in Cloud Computing," Proc.

IEEE 29th Int’l Conf. Computer Comm.

(INFOCOM), pp. 525- 533, 2010.

[26] A. Shamir, "How to Share a Secret," ACM

Comm., vol. 22, pp. 612- 613, 1979.

[27] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,

W. Kilian, P. Strzelczak, J. Szczepkowski, C.

Ungureanu, and M. Welnicki, "Hydrastor: A

Scalable Secondary Storage," Proc. Seventh Conf.

File and Storage Technologies (FAST), pp. 197-

210, 2009.

[28] A Secure Erasure Code-Based Cloud Storage

System with Secure Data Forwarding Hsiao-Ying

Lin, Member, IEEE, and Wen-Guey Tzeng,

Member, IEEE Transactions On Parallel And

Distributed Systems, Vol. 23, No. 6, June 2012

