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ABSTRACT 
 

Cloud storage system, consisting of a collection of storage servers, provides long-term storage services over the 

Internet. Storing data in a third party’s cloud system causes serious concern over data confidentiality. General 

encryption schemes protect data confidentiality, but also limit the functionality of the storage system because a few 

operations are supported over encrypted data. Constructing a secure storage system that supports multiple functions 

is challenging when the storage system is distributed and has no central authority. We propose a threshold proxy re-

encryption scheme and integrate it with a decentralized erasure code such that a secure distributed storage system is 

formulated. The distributed storage system not only supports secure and robust data storage and retrieval, but also 

lets a user forward his data in the storage servers to another user without retrieving the data back. The main 

technical contribution is that the proxy re-encryption scheme supports encoding operations over encrypted messages 

as well as forwarding operations over encoded and encrypted messages. Our method fully integrates encrypting, 

encoding, and forwarding. We analyse and suggest suitable parameters for the number of copies of a message 

dispatched to storage servers and the number of storage servers queried by a key server. These parameters allow 

more flexible adjustment between the number of storage servers and robustness. 

Keywords: Secure Storage System , Threshold Cryptography ,Decentralized Erasure Code, Proxy Re-Encryption. 

 

 

I. INTRODUCTION 

 

AS become available in recent years, many services are 

high-speed networks and ubiquitous Internet access 

provided on the Internet such that users can use them 

from anywhere at any time. For example, the email 

service is probably the most popular one. Cloud 

computing is a concept that treats the resources on the 

Internet as a unified entity, a cloud. Users just use 

services without being concerned about how 

computation is done and storage is managed. In this 

paper, we focus on designing a cloud storage system for 

robustness, confidentiality, and functionality. A cloud 

storage system is considered as a largescale distributed 

storage system that consists of many independent 

storage servers. 

 

Data robustness is a major requirement for storage 

systems. There have been many proposals of storing 

data over storage servers [1], [2], [3], [4], [5]. One way 

to provide data robustness is to replicate a message such 

that each storage server stores a copy of the message. It 

is very robust because the message can be retrieved as 

long as one storage server survives. Another way is to 

encode a message of k symbols into a codeword of n 

symbols by erasure coding. To store a message, each of 

its codeword symbols is stored in a different storage 

server. A storage server failure corresponds to an 

erasure error of the codeword symbol. As long as the 

number of failure servers is under the tolerance 

threshold of the erasure code, the message can be 

recovered from the codeword symbols stored in the 

available storage servers by the decoding process. This 

provides a tradeoff between the storage size and the 

tolerance threshold of failure servers. A decentralized 

erasure code is an erasure code that independently 

computes each codeword symbol for a message. Thus, 

the encoding process for a message can be split into n 
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parallel tasks of generating codeword symbols. A 

decentralized erasure code is suitable for use in a 

distributed storage system. After the message symbols 

are sent to storage servers, each storage server 

independently computes a codeword symbol for the 

received message symbols and stores it. This finishes 

the encoding and storing process. The recovery process 

is the same.  

 

Storing data in a third party’s cloud system causes 

serious concern on data confidentiality. In order to 

provide strong confidentiality for messages in storage 

servers, a user can encrypt messages by a cryptographic 

method before applying an erasure code method to 

encode and store messages. When he wants to use a 

message, he needs to retrieve the codeword symbols 

from storage servers, decode them, and then decrypt 

them by using cryptographic keys. There are three 

problems in the above straightforward integration of 

encryption and encoding. First, the user has to do most 

computation and the communication traffic between the 

user and storage servers is high. Second, the user has to 

manage his cryptographic keys. If the user’s device of 

storing the keys is lost or compromised, the security is 

broken. Finally, besides data storing and retrieving, it is 

hard for storage servers to directly support other 

functions. For example, storage servers cannot directly 

forward a user’s messages to another one. The owner of 

messages has to retrieve, decode, decrypt and then 

forward them to another user. 

 

In this paper, we address the problem of forwarding data 

to another user by storage servers directly under the 

command of the data owner. We consider the system 

model that consists of distributed storage servers and 

key servers. Since storing cryptographic keys in a single 

device is risky, a user distributes his cryptographic key 

to key servers that shall perform cryptographic 

functions on behalf of the user. These key servers are 

highly protected by security mechanisms. To well fit the 

distributed structure of systems, we require that servers 

independently perform all operations. With this 

consideration, we propose a new threshold proxy re 

encryption scheme and integrate it with a secure 

decentralized code to form a secure distributed storage 

system. The encryption scheme supports encoding 

operations over encrypted messages and forwarding 

operations over encrypted and encoded messages. The 

tight integration of encoding, encryption, and 

forwarding makes the storage system efficiently meet 

the requirements of data robustness, data confidentiality, 

and data forwarding. Accomplishing the integration 

with consideration of a distributed structure is 

challenging. Our system meets the requirements that 

storage servers independently perform encoding and re-

encryption and key servers independently perform 

partial decryption. Moreover, we consider the system in 

a more general setting than previous works. This setting 

allows more flexible adjustment between the number of 

storage servers and robustness. 

Our contributions. Assume that there are n distributed 

storage servers and m key servers in the cloud storage 

system. A message is divided into k blocks and 

represented as a vector of k symbols. Our contributions 

are as follows:  

 

1. We construct a secure cloud storage system that 

supports the function of secure data forwarding by 

using a threshold proxy re-encryption scheme.The 

encryption scheme supports decentralized erasure 

codes over encrypted messages and forwarding 

operations over encrypted and encoded messages. 

Our system is highly distributed where storage 

servers independently encode and forward messages 

and key servers independently perform partial 

decryption. 

2. We present a general setting for the parameters of 

our secure cloud storage system. Our parameter 

setting of n=ak
C 

supersedes the previous one of 

n=ak√k, where C≥1.5 and a >√2[6]. Our result 

n=ak
C 

akc allows the of storage servers be much 

great than the number of blocks of a message.In 

practical systems, the number of storage servers is 

much more than k. The sacrifice is to slightly 

increase the total copies of an encrypted message 

symbol sent to storage servers. 

 

Nevertheless, the storage size in each storage server 

does not increase because each storage server stores an 

encoded result (a codeword symbol), which is a 

combination of encrypted message symbols. 

 

II. METHODS AND MATERIAL 
 

Related Works 

 

We briefly review distributed storage systems, proxy 

reencryption schemes, and integrity checking 

mechanisms. 
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2.1 Distributed Storage Systems  

 

At the early years, the Network-Attached Storage (NAS) 

[7] and the Network File System (NFS) [8] provide 

extra storage devices over the network such that a user 

can access the storage devices via network connection. 

Afterward, many improvements on scalability, 

robustness, efficiency, and security were proposed [1], 

[2], [9]. A decentralized architecture for storage systems 

offers good scalability, because a storage server can join 

or leave without control of a central authority. To 

provide robustness against server failures, a simple 

method is to make replicas of each message and store 

them in different servers. However, this method is 

expensive as z replicas result in z times of expansion. 

 One way to reduce the expansion rate is to use erasure 

codes to encode messages [10], [11], [12], [13], [5]. A 

message is encoded as a codeword, which is a vector of 

symbols, and each storage server stores a codeword 

symbol. A storage server failure is modeled as an 

erasure error of the stored codeword symbol. Random 

linear codes support distributed encoding, that is, each 

codeword symbol is independently computed. To store a 

message of k blocks, each storage server linearly 

combines the blocks with randomly chosen coefficients 

and stores the codeword symbol and coefficients. To 

retrieve the message, a user queries k storage servers for 

the stored codeword symbols and coefficients and 

solves the linear system. Dimakis et al. [13] considered 

the case that n=ak
C 

for a fixed constant a. They showed 

that distributing each block of a message to v randomly 

chosen storage servers is enough to have a probability 

1- k/p –o(1) of a successful data retrieval, where v = b 

ln k, b > 5a, and p is the order of the used group. The 

sparsity parameter v = b ln k is the number of storage 

servers which a block is sent to. The larger v is, the 

communication cost is higher and the successful 

retrieval probability is higher. The system has a light 

data confidentiality because an attacker can compromise 

k storage servers to get the message. 

 

Lin and Tzeng [6] addressed robustness and 

confidentiality issues by presenting a secure 

decentralized erasure code for the networked storage 

system. In addition to storage servers, their system 

consists of key servers, which hold cryptographic key 

shares and work in a distributed way. In their system, 

stored messages are encrypted and then encoded. To 

retrieve a message, key servers query storageservers for 

the user. As long as the number of available key servers 

is over a threshold t, the message can be successfully 

retrieved with an overwhelming probability. One of 

their results shows that when there are n storage servers 

with n=ak√k, the parameter v is v = b ln k with b > 5a, 

and each key server queries 2 storage servers for each 

retrieval request, the probability of a successful retrieval 

is at least k/p –o(1) . 

 

2.2 Proxy Re-Encryption Schemes 

 

Proxy re-encryption schemes are proposed by Mambo 

and Okamoto [14] and Blaze et al. [15]. In a proxy re-

encryption scheme, a proxy server can transfer a 

ciphertext under a public key PKA to a new one under 

another public key PKB by using the re-encryption key 

RKA→B. The server does not know the plaintext during 

transformation. Ateniese et al. [16] proposed some 

proxy re-encryption schemes and applied them to the 

sharing function of secure storage systems. In their 

work, messages are first encrypted by the owner and 

then stored in a storage server. When a user wants to 

share his messages, he sends a re-encryption key to the 

storage server. The storage server re-encrypts the 

encrypted messages for the authorized user. Thus, their 

system has data confidentiality and supports the data 

forwarding function. Our work further integrates 

encryption, re-encryption, and encoding such that 

storage robustness is strengthened. 

 

 
Figure 1. A general system model of our work 

 

Type-based proxy re-encryption schemes proposed by 

Tang [17] provide a better granularity on the granted 

right of a re-encryption key. A user can decide which 

type of messages and with whom he wants to share in 

this kind of proxy reencryption schemes. Key-private 

proxy re-encryption schemes are proposed by Ateniese 

et al. [18]. In a key-private proxy re-encryption scheme, 

given a re-encryption key, a proxy server cannot 

determine the identity of the recipient. This kind of 

proxy re-encryption schemes provides higher privacy 

guarantee against proxy servers. Although most proxy 
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re-encryption schemes use pairing operations, there 

exist proxy re-encryption schemes without pairing [19]. 

  

 2.3 Integrity Checking Functionality  

 

Another important functionality about cloud storage is 

the function of integrity checking. After a user stores 

data into the storage system, he no longer possesses the 

data at hand. The user may want to check whether the 

data are properly stored in storage servers. The concept 

of provable data possession [20], [21] and the notion of 

proof of storage [22], [23], [24] are proposed. Later, 

public auditability of stored data is addressed in [25]. 

Nevertheless all of them consider the messages in the 

cleartext form.  

 

3. Scenario 

  

We present the scenario of the storage system, the threat 

model that we consider for the confidentiality issue, and 

a discussion for a straightforward solution. 

 

3.1 System Model 

 

As shown in Fig. 1, our system model consists of users, 

n storage servers SS1; SS2; . . . ; SSn, and m key servers 

KS1; KS2; . . . ; KSm. Storage servers provide storage 

services and key servers provide key management 

services. They work independently. Our distributed 

storage system consists of four phases: system setup, 

data storage, data forwarding, and data retrieval. These 

four phases are described as follows. In the system setup 

phase, the system manager chooses system parameters 

and publishes them. Each user A is assigned a public-

secret key pair (PKA,SKA). User A distributes his 

secret key SKA to key servers such that each key server 

KSi holds a key share SKA,i, 1≤ i ≤ m. The key is 

shared with a threshold t. 

 

In the data storage phase, user A encrypts his message 

M and dispatches it to storage servers. A message M is 

decomposed into k blocks m1; m2; . . . ; mk and has an 

identifier ID. User A encrypts each block mi into a 

ciphertext Ci and sends it to v randomly chosen storage 

servers. Upon receiving ciphertexts from a user, each 

storage server linearly combines them with randomly 

chosen coefficients into a codeword symbol and stores it. 

Note that a storage server may receive less than k 

message blocks and we assume that all storage servers 

know the value k in advance. In the dataforwarding 

phase, user A forwards his encrypted message with an 

identifier ID stored in storage servers to user B such that 

B can decrypt the forwarded message by his secret key. 

To do so, A uses his secret key SKA and B’s public key 

PKB to compute a re-encryption key RK
ID

A→B and then 

sends RK
ID

 A→B to all storage servers. Each storage 

server uses the reencryption key to re encrypt its 

codeword symbol for later retrieval requests by B. The 

re-encrypted codeword symbol is the combination of 

ciphertexts under B’s public key. In order to distinguish 

re-encrypted codeword symbols from intact ones, we 

call them original codeword symbols and reencrypted 

codeword symbols, respectively. 

 In the data retrieval phase, user A requests to retrieve a 

message from storage servers. The message is either 

stored by him or forwarded to him. User A sends a 

retrieval request to key servers. Upon receiving the 

retrieval request and executing a proper authentication 

process with user A, each key server KSi requests u 

randomly chosen storage servers to get codeword 

symbols and does partial decryption on the received 

codeword symbols by using the key share SKA,i. Finally, 

user A combines the partially decrypted codeword 

symbols to obtain the original message M. 

 System recovering. When a storage server fails, a new 

one is added. The new storage server queries k available 

storage servers, linearly combines the received 

codeword symbols as a new one and stores it. The 

system is then recovered.  

 

3.2 Threat Model  

 

We consider data confidentiality for both data storage 

and data forwarding. In this threat model, an attacker 

wants to break data confidentiality of a target user. To 

do so, the attacker colludes with all storage servers, 

nontarget users, and up to (t – 1) key servers. The 

attacker analyzes stored messages in storage servers, the 

secret keys of nontarget users, and the shared keys 

stored in key servers. Note that the storage servers store 

all re-encryption keys provided by users. The attacker 

may try to generate a new re-encryption key from stored 

re-encryption keys. We formally model this attack by 

the standard chosen plaintext attack
1
 of the proxy re-

encryption scheme in a threshold version, as shown in 

Fig. 2. 
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Figure 2. The security game for the chosen plaintext 

attack. 

 

The challenger C provides the system parameters. After 

the attacker A chooses a target user T , the challenger 

gives him (t-1) key shares of the secret key SKT of the 

target user T to model (t-1) compromised key servers. 

Then, the attacker can query secret keys of other users 

and all reencryption keys except those from T to other 

users. This models compromised nontarget users and 

storage servers. In the challenge phase, the attacker 

chooses two messages M0 and M1 with the identifiers 

ID0 and ID1, respectively. The challenger throws a 

random coin b and encrypts the message Mb with T ’s 

public key PKT . After getting the ciphertext from the 

challenger, the attacker outputs a bit b0 for guessing b. 

In this game, the attacker wins if and only if b0 ¼ b. 

The advantage of the attacker is defined as |1/2-

Pr[b’=b]|. 

 

A cloud storage system modeled in the above is secure 

if no probabilistic polynomial time attacker wins the 

game with a nonnegligible advantage. A secure cloud 

storage system implies that an unauthorized user or 

server cannot get the content of stored messages, and a 

storage server cannot generate re-encryption keys by 

himself. If a storage server can generate a re-encryption 

key from the target user to another user B, the attacker 

can win the security game by re-encrypting the 

ciphertext to B and decrypting the reencrypted 

ciphertext using the secret key SKB. Therefore, this 

model addresses the security of data storage and data 

forwarding. 

 

 

 

3.3 A Straightforward Solution  

 

A straightforward solution to supporting the data 

forwarding function in a distributed storage system is as 

follows:when the owner A wants to forward a message 

to user B, he downloads the encrypted message and 

decrypts it by using his secret key. He then encrypts the 

message by using B’s public key and uploads the new 

ciphertext. When B wants to retrieve the forwarded 

message from A, he downloads the ciphertext and 

decrypts it by his secret key. The whole data forwarding 

process needs three communication rounds for A’s 

downloading and uploading and B’s downloading. The 

communication cost is linear in the length of the 

forwarded message. The computation cost is the 

decryption and encryption for the owner A, and the 

decryption for user B. Proxy re-encryption schemes can 

significantly decrease communication and computation 

cost of the owner. In a proxy re-encryption scheme,the 

owner sends a re-encryption key to storage servers such 

that storage servers perform the re-encryption operation 

for him. Thus, the communication cost of the owner is 

independent of the length of forwarded message and the 

computation cost of re-encryption is taken care of by 

storage servers. Proxy re-encryption schemes 

significantly reduce the overhead of the data forwarding 

function in a secure storage system. 

 

III. RESULTS AND DISCUSSION 
 

Construction of Secure Cloud Storage Systems 

  

Before presenting our storage system, we briefly 

introduce the algebraic setting, the hardness assumption, 

an erasure code over exponents, and our approach. 

 

Bilinear map. Let G1 and G2 be cyclic multiplicative 

groups
2
 with a prime order p and q ϵG1 be a generator. 

A map ẽ:G X G1→ G2 is a bilinear map if it is 

efficiently computable and has the properties of 

bilinearity and nondegeneracy: for any x,y ϵ Z
*
p, ẽ 

(g
x 

,g
y
 )= ẽ (g

 
,g )

xy 
and ẽ (g

 
,g )is not the identity 

element in G2. Let Gen(1
λ
 )be an algorithm 

generating,(g ẽ ,G1,G2,p), where is the length of p. Let 

x ϵ R X denote that x is randomly chosen from the set X. 

  

Decisional bilinear Diffie-Hellman assumption. This 

assumption is that it is computationally infeasible to 

distinguish the distributions (g, g
x
, g

y
, g

z
, ẽ (g

 
,g )

xyz
) and 
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(g, g
x
, g

y
, g

z
, ẽ (g

 
,g )

r
, where x, y, z ϵ R Z

*
p . Formally, 

for any probabilistic polynomial time algorithm A, the 

following is negligible (in λ). 

 

|Pr[A(g,g
x
, g

y
g

z
,Qz)=b:x,y,z,r,ϵR Z

*
p, 

Q0= ẽ (g
 
,g )

xyz
;
 
Q1= ẽ (g

 
,g )

r
;b ϵ R{0,1}]-1/2|. 

 

Erasure coding over exponents. We consider that the 

message domain is the cyclic multiplicative group G2 

described above. An encoder generates a generator 

matrixG=[ gi,j] for 1≤ i ≤ k, 1 ≤ j ≤ n as follows: for 

each row, the encoder randomly selects an entry and 

randomly sets a value from Z
*
p to the entry. The 

encoder repeats this step v times with replacement for 

each row. An entry of a row can be selected multiple 

times but only set to one value. The values of the rest 

entries are set to 0. Let the message be (m1,m2, . . .,mk) 

ϵ G
K
 2. The encoding process is to generate 

(w1,w2, . . .,wn) ϵ G G
n2

 , where mg1 ,mg 2   mg k for1 

to n. The first step of the decoding process is tocompute 

the inverse of a k submatrix K of G. The final step of 

the decoding process is to compute An example is 

shown in Fig. 3. User A stores two messages m1 and 

m2 into four storage servers. When the storage servers 

SS1 and SS3 are available and the k k submatrix K is 

invertible, user A can decode m1 and m2 from the 

codeword symbols w1;w3 and the coefficients (g1,g2), 

which are stored in the storage servers SS1 and SS3.  

 

Our approach. We use a threshold proxy re-encryption 

scheme with multiplicative homomorphic property. An 

encryption scheme is multiplicative homomorphic if it 

supports a group operation on encrypted plaintexts 

without decryption 

 

D(SK, E(PK, m1) E(PK, m2)) = m1. m2 

 

where E is the encryption function, D is the decryption 

function, and (PK,SK) is a pair of public key and secret 

key. Given two coefficients g1 and g2, two message 

symbols m1 and m2 can be encoded to a codeword 

symbol mg 11mg 22 in the encrypted form 

 

C = E(PK, m1)
g1

 E(PK, m2)
g2

= E(PK, mg1 , mg 2) 

 

Thus, a multiplicative homomorphic encryption scheme 

supports the encoding operation over encrypted 

messages. We then convert a proxy re-encryption 

scheme with multiplicative homomorphic property into 

a threshold version. A secret key is shared to key 

servers with a threshold value t via the Shamir secret 

sharing scheme [26], where t k. In our system, to 

decrypt for a set of k message symbols, each key server 

independently queries 2 storage servers and partially 

decrypts two encrypted codeword symbols. As long as t 

key servers are available, k codeword symbols are 

obtained from the partially decrypted ciphertexts 

 

4.1 A Secure Cloud Storage System with Secure 

Forwarding 

 

As described in Section 3.1, there are four phases of our 

storage system. 

 

System Setup. The algorithm SetUp(1
r
 )generates the 

system parameters μ . A user uses KeyGen(μ) to 

generate his public and secret key pair and 

ShareKeyGen(.) to share his secret key to a set of m key 

servers with a threshold t, where k≤ t ≤ m. The user 

locally stores the third component of his secret key. 

 

Data Storage. When user A wants to store a message of 

k blocks m1, m2, . . . mk with the identifier ID, he 

computes the identity token y= h and performs the 

encryption algorithm Enc(.) on and k blocks to get k 

original ciphertexts C1, C2, . . . , Ck. An original 

ciphertext is indicated by a leading bit b =0. User A 

sends each ciphertext Ci to v randomly chosen storage 

servers. A storage server receives a set of original 

ciphertexts with the same identity token from A. When 

a ciphertext Ci is not received, the storage server inserts 

Ci = (0,1,t, 1) to the set. The special format of (0,1,t, 1) 

is a mark for the absence of Ci. The storage server 

performs Encode(.) on the set of k ciphertexts and stores 

the encoded result (codeword symbol). 

 

Data Forwarding. User A wants to forward a message 

to another user B. He needs the first component a1 of 

his secret key. If A does not possess a1, he queries key 

servers for key shares. When at least t key servers 

respond, A recovers the first component a1 of the secret 

key SKA via the KeyRecover(.) algorithm. Let the 

identifier of the message be ID. User A computes the re-

encryption key RK
ID 

A→B via the ReKeyGen(.) 

algorithm and securely sends the reencryption key to 

each storage server. By using RK
ID 

A→B, a storage 

server re-encrypts the original codeword symbol C0 

with the identifier ID into a re-encrypted codeword 

symbol C
”
 via the ReEnc(.) algorithm such that C

”
 is 

decryptable by using B’s secret key. A re-encrypted 
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codeword symbol is indicated by the leading bit b =1. 

Let the public key PKB of user B be (gb1; hb2). 

 

4.2 Analysis 

 

We analyze storage and computation complexities, 

correctness, and security of our cloud storage system in 

this section. Let the bit-length of an element in the 

group G1 be l1 and G2 be l2. Let coefficients gi,j be 

randomly chosen from {0, 1}
l3
. 

 

Computation cost. We measure the computation cost 

by the number of pairing operations, modular 

exponentiations in G1 and G2, modular multiplications 

in G1 and G2, and arithmetic operations over GF(p). 

These operations are denoted as Pairing, Exp1, Exp2, 

Mult1, Mult2, and Fp, respectively. The cost is 

summarized in Table 1. Computing an Fp takes much 

less time than computing a Mult1 or a Mult2. The time 

of computing an Exp1 is 1.5[log p] times as much as the 

time of computing a Mult1, on average, (by using the 

square-and multiply algorithm). Similarly, the time of 

computing a Exp2 is 1.5[log p] times as much as the 

time of computing a Mult2, on average. 

 

 
 

Correctness. There are two cases for correctness. The 

owner A correctly retrieves his message and user B 

correctly retrieves a message forwarded to him. The 

correctness of encryption and decryption for A can be 

seen in (1). The correctness of re-encryption and 

decryption for B can be seen in (2). As long as at least k 

storage servers are available, a user can retrieve data 

with an overwhelming probability. Thus, our storage 

system tolerates n k server failures. The probability of a 

successful retrieval. A successful retrieval is an event 

that a user successfully retrieves all k blocks of a 

message no matter whether the message is owned by 

him or forwarded to him. The randomness comes from 

the random selection of storage servers in the data 

storage phase, the random coefficients chosen by 

storage servers, and the random selection of key servers 

in the data retrieval phase. The probability of a 

uccessful retrieval depends on (n, k, u, v) and all 

randomness. 

 

The methodology of analysis is similar to that in [13] 

and [6]. However, we consider a different system model 

from the one in [13] and a more flexible parameter 

setting for n = akc than the settings in [13] and [6]. The 

difference between our system model and the one in [13] 

is that our system model has key servers. In [13], a 

single user queries k distinct storage servers to retrieve 

the data. On the other hand, each key server in our 

system independently queries u storage servers. The use 

of distributed key servers increases the level of key 

protection but makes the analysis harder. 

 

Theorem 1. Assume that there are k blocks of a 

message, n storage servers, and m key servers, where n 

=akc, m≥ t ≥ k, c≥ 1.5 and a is a constant with a >√2. 

For v =bk
c-1 

ln k and u = 2 with b > 5a, the probability 

of a successful retrieval is at least 1- k/p- o(1). 

 

Security. The data confidentiality of our cloud storage 

system is guaranteed even if all storage servers, 

nontarget users, and up to (t- 1) key servers are 

compromised by the attacker. Recall the security game 

illustrated in Fig. 2. The proof for Theorem 2 is 

provided in Appendix B, available in the online 

supplementary material. 

 

Theorem 2. Our cloud storage system described in 

Section 4.1 is secure under the threat model in Section 

3.2 if the decisional bilinear Diffie-Hellman assumption 

holds. 

 

IV. CONCLUSION 
 

In this paper, we consider a cloud storage system 

consists of storage servers and key servers. We integrate 

a newly proposed threshold proxy re-encryption scheme 

and erasure codes over exponents. The threshold proxy 

reencryption scheme supports encoding, forwarding, 

and partial decryption operations in a distributed way. 

To decrypt a message of k blocks that are encrypted and 

encoded to n codeword symbols, each key server only 

has to partially decrypt two codeword symbols in our 
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system. By using the threshold proxy re-encryption 

scheme, we present a secure cloud storage system that 

provides secure data storage and secure data forwarding 

functionality in a decentralized structure. Moreover, 

each storage server independently performs encoding 

and re-encryption and each key server independently 

performs partial decryption. 

 

Our storage system and some newly proposed content 

addressable file systems and storage system [27], [28], 

[29] are highly compatible. Our storage servers act as 

storage nodes in a content addressable storage system 

for storing content addressable blocks. Our key servers 

act as access nodes for providing a front-end layer such 

as a traditional file system interface. Further study on 

detailed cooperation is required. 

 

V. REFERENCES 
 

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. 

Geels, R. Gummadi, S. Rhea, H. Weatherspoon, 

W. Weimer, C. Wells, and B. Zhao, "Oceanstore: 

An chitecture for Global-Scale Persistent 

Storage," Proc. Ninth Int’l Conf. Architectural 

Support for Programming Languages and 

Operating Systems (ASPLOS), pp. 190 201, 2000. 

[2] P. Druschel and A. Rowstron, "PAST: A Large-

Scale, Persistent Peer-to-Peer Storage Utility," 

Proc. Eighth Workshop Hot Topics in Operating 

System (HotOS VIII), pp. 75-80, 2001. 

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. 

Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M. 

Theimer, and R. Wattenhofer, "Farsite: Federated, 

Available, and Reliable Storage for an 

Incompletely Trusted Environment," Proc. Fifth 

Symp. Operating System Design and 

Implementation (OSDI), pp. 1-14, 2002. 

[4] A. Haeberlen, A. Mislove, and P. Druschel, 

"Glacier: Highly Durable, Decentralized Storage 

Despite Massive Correlated Failures," Proc. 

Second Symp. Networked Systems Design and 

Implementation (NSDI), pp. 143-158, 2005. 

[5] Z. Wilcox-O’Hearn and B. Warner, "Tahoe: The 

Least-Authority Filesystem," Proc. Fourth ACM 

Int’l Workshop Storage Security and Survivability 

(StorageSS), pp. 21-26, 2008. 

[6] H.-Y. Lin and W.-G. Tzeng, "A Secure 

Decentralized Erasure Code for Distributed 

Network Storage," IEEE Trans. Parallel and 

Distributed Systems, vol. 21, no. 11, pp. 1586-

1594, Nov. 2010. 

[7] D.R. Brownbridge, L.F. Marshall, and B. Randell, 

"The Newcastle Connection or Unixes of the 

World Unite!," Software Practice and Experience, 

vol. 12, no. 12, pp. 1147-1162, 1982. 

[8] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, 

and B. Lyon, "Design and Implementation of the 

Sun Network Filesystem," Proc. USENIX Assoc. 

Conf., 1985. 

[9] M. Kallahalla, E. Riedel, R. Swaminathan, Q. 

Wang, and K. Fu, "Plutus: Scalable Secure File 

Sharing on Untrusted Storage," Proc. Second 

USENIX Conf. File and Storage Technologies 

(FAST), pp. 29- 42, 2003. 

[10] S.C. Rhea, P.R. Eaton, D. Geels, H. 

Weatherspoon, B.Y. Zhao, and J. Kubiatowicz, 

"Pond: The Oceanstore Prototype," Proc. Second 

USENIX Conf. File and Storage Technologies 

(FAST), pp. 1-14, 2003. 

[11] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, 

and G.M. Voelker, "Total Recall: System Support 

for Automated Availability Management," Proc. 

First Symp. Networked Systems Design and 

Implementation (NSDI), pp. 337-350, 2004. 

[12] A.G. Dimakis, V. Prabhakaran, and K. 

Ramchandran, "Ubiquitous Access to Distributed 

Data in Large-Scale Sensor Networks through 

Decentralized Erasure Codes," Proc. Fourth Int’l 

Symp. Information Processing in Sensor 

Networks (IPSN), pp. 111- 117, 2005. 

[13] A.G. Dimakis, V. Prabhakaran, and K. 

Ramchandran, "Decentralized Erasure Codes for 

Distributed Networked Storage," IEEE Trans. 

Information Theory, vol. 52, no. 6 pp. 2809-2816, 

June 2006. 

[14] M. Mambo and E. Okamoto, "Proxy 

Cryptosystems: Delegation of the Power to 

Decrypt Ciphertexts," IEICE Trans. Fundamentals 

of Electronics, Comm. and Computer Sciences, 

vol. E80-A, no. 1, pp. 54-63, 1997. 

[15] M. Blaze, G. Bleumer, and M. Strauss, 

"Divertible Protocols and Atomic Proxy 

Cryptography," Proc. Int’l Conf. Theory and 

Application of Cryptographic Techniques 

(EUROCRYPT), pp. 127-144, 1998. 

[16] G. Ateniese, K. Fu, M. Green, and S. 

Hohenberger, "Improved Proxy Re-Encryption 

Schemes with Applications to Secure Distributed 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  297 

Storage," ACM Trans. Information and System 

Security, vol. 9, no. 1, pp. 1-30, 2006. 

[17] Q. Tang, "Type-Based Proxy Re-Encryption and 

Its Construction," Proc. Ninth Int’l Conf. 

Cryptology in India: Progress in Cryptology 

(INDOCRYPT), pp. 130-144, 2008. 

[18] G. Ateniese, K. Benson, and S. Hohenberger, 

"Key-Private Proxy Re-Encryption," Proc. Topics 

in Cryptology (CT-RSA), pp. 279-294, 2009. 

[19] J. Shao and Z. Cao, "CCA-Secure Proxy Re-

Encryption without Pairings," Proc. 12th Int’l 

Conf. Practice and Theory in Public Key 

Cryptography (PKC), pp. 357-376, 2009. 

[20] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. 

Kissner, Z. Peterson, and D. Song, "Provable Data 

Possession at Untrusted Stores," Proc. 14th ACM 

Conf. Computer and Comm. Security (CCS), pp. 

598-609, 2007. 

[21] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. 

Tsudik, "Scalable and Efficient Provable Data 

Possession," Proc. Fourth Int’l Conf. Security and 

Privacy in Comm. Netowrks (SecureComm), pp. 

1-10,2008. 

[22] H. Shacham and B. Waters, "Compact Proofs of 

Retrievability," Proc. 14th Int’l Conf. Theory and 

Application of Cryptology and Information 

Security (ASIACRYPT), pp. 90-107, 2008. 

[23] G. Ateniese, S. Kamara, and J. Katz, "Proofs of 

Storage from Homomorphic Identification 

Protocols," Proc. 15th Int’l Conf. Theory and 

Application of Cryptology and Information 

Security (ASIACRYPT), pp. 319-333, 2009. 

[24] K.D. Bowers, A. Juels, and A. Oprea, "HAIL: A 

High-Availability and Integrity Layer for Cloud 

Storage," Proc. 16th ACM Conf. Computer and 

Comm. Security (CCS), pp. 187-198, 2009. 

[25] C. Wang, Q. Wang, K. Ren, and W. Lou, 

"Privacy-Preserving Public Auditing for Data 

Storage Security in Cloud Computing," Proc. 

IEEE 29th Int’l Conf. Computer Comm. 

(INFOCOM), pp. 525- 533, 2010. 

[26] A. Shamir, "How to Share a Secret," ACM 

Comm., vol. 22, pp. 612- 613, 1979. 

[27] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, 

W. Kilian, P. Strzelczak, J. Szczepkowski, C. 

Ungureanu, and M. Welnicki, "Hydrastor: A 

Scalable Secondary Storage," Proc. Seventh Conf. 

File and Storage Technologies (FAST), pp. 197-

210, 2009. 

[28] A Secure Erasure Code-Based Cloud Storage 

System with Secure Data Forwarding Hsiao-Ying 

Lin, Member, IEEE, and Wen-Guey Tzeng, 

Member, IEEE Transactions On Parallel And 

Distributed Systems, Vol. 23, No. 6, June 2012 

 

 


